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A B S T R A C T

Roughly speaking, a population is said to have an ideal free distribution on a spatial region if all of its members can
and do locate themselves in a way that optimizes their fitness, allowing for the effects of crowding. Dispersal strategies
that can lead to ideal free distributions of populations using them have been shown to exist and to be evolutionarily
stable in a number of modeling contexts in the case of habitats that vary in space but not in time. Those modeling
contexts include reaction-diffusion-advection models and the analogous models using discrete diffusion or nonlocal
dispersal described by integro-differential equations. Furthermore, in the case of reaction-diffusion-advection models
and their nonlocal analogues, there are strategies that allow populations to achieve an ideal free distribution by using
only local information about environmental quality and/or gradients. We show that in the context of reaction-dif-
fusion-advection models for time-periodic environments with spatially varying resource levels, where the total level of
resources in an environment remains fixed but its location varies seasonally, there are strategies that allow populations
to achieve an ideal free distribution. We also show that those strategies are evolutionarily stable. However, achieving
an ideal free distribution in a time-periodic environment requires the use of nonlocal information about the en-
vironment such as might be derived from experience and memory, social learning, or genetic programming.

1. Introduction

The ideal free distribution is a now long-established construct in
ecological theory with significant ramifications in the study of the
evolution of dispersal [1–5,7,15–17]. Initially, the ideal free distribu-
tion was formulated as a verbal description of the way organisms lo-
cated themselves [10,11] motivated by observation of territorial pat-
terns of birds. It asserts that if the members of a species have complete
knowledge of the environment (ideal) and may locate themselves as
they wish (free), they will do so in a manner that maximizes fitness,
here thought of as local per capita reproductive success. Fitness is as-
sumed to be discounted by the presence of conspecifics. In this frame-
work, an ideal free distribution is achieved by the species in a given
habitat once its fitness is constant in all occupied parts of the habitat. At
this point, in a temporally constant habitat, there can be no further net
movement of the species in question, as net movement would lower
fitness in some locations and raise it in others. In a temporally varying
habitat the situation is somewhat different, because the location of
regions where fitness is maximized may change over time, so in-
dividuals may need to keep moving to optimize their fitness. However,

it turns out that in certain time periodic environments, it is possible for
a population to achieve a generalized version of an ideal free dis-
tribution by dispersing in an appropriate way.

Movement leading to an ideal free distribution need not be coupled
to population dynamics, and, in principle, the equlibrated fitness
characterizing an ideal free distribution may be positive. However, in
situations wherein dispersal and population dynamics are coupled, the
species in question should continue increasing in abundance so long as
fitness remains positive. Consequently, in such a setting, fitness could
only be expected to equilibrate at 0. Suppose now that the environment
is spatially heterogeneous but temporally constant and that dispersal
and population dynamics are coupled additively. Then the local po-
pulation growth should be zero and the ideal free distribution should
correspond to a spatially varying equilibrium of the system in the ab-
sence of dispersal. In the particular but common situation of a mathe-
matical model with logistic growth in a habitat with a favorable re-
source distribution, under appropriate scaling, such an equilibrium
coincides with perfect alignment to resource distribution.
Consequently, in that case, having no net movement when achieving an
ideal free distribution translates to the resource distribution being a
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zero of the dispersal term. In this case, we say that the species in
question exhibits an ideal free dispersal strategy. In the corresponding
time periodic case there will not generally be an equilibrium but there
will be a periodic steady state. We will show that under certain con-
ditions a population can still align itself perfectly to the resource dis-
tribution, but in general that will not correspond to a zero of the dis-
persal term, since the resources can move. We will use perfect
alignment with the resource distribution as a generalization of the
classical definition of an ideal free distribution.

Work by a number of researchers (including ourselves) has shown
that ideal free dispersal offers a distinct evolutionary advantage in a
number of spatially heterogeneous but temporally constant modeling
frameworks including reaction-diffusion-advection [1,2,15–17], dis-
crete diffusion[3], integro-differential [4], and integro-difference [6].
This advantage is expressed through the parlance of adaptive dynamics
and focuses on the pairwise invasibility of competing species. We say
that species 1 can invade species 2 if it can increase its abundance when
it is introduced at low densities in a habitat in which species 2 is at its
carrying capacity. We examine evolutionary advantage of dispersal
strategies if the competitors are ecologically identical, in essence mu-
tants of each other differing only in their modes of movement. In such a
case, we say that a dispersal strategy is evolutionarily stable (an ESS)
relative to some class of strategies if a species adopting this strategy
cannot be invaded by an ecologically identical competitor adopting any
other strategy from this class. A dispersal strategy is a neighborhood
invader strategy (an NIS) if it can invade any nearby strategy. Strategies
which are both ESS and NIS have a clear evolutionary advantage. The
work in [1–7,15–17] shows that ideal free dispersal is both an ESS and
an NIS robustly across a range of mathematical modeling frameworks in
the spatially heterogeneous but temporally constant setting.

The purpose of this article is two-fold. First, we determine condi-
tions under which ideal free dispersal can be realized in the reaction-
diffusion-advection setting when there is temporal periodicity in addi-
tion to spatial heterogeneity. We find that there is some restriction on
the spatio-temporal variation possible in the distribution of the resource
but that the restriction is not biologically unreasonable. Second, we
establish that when ideal free dispersal is possible, it indeed is an ESS
and NIS, globally among the class of strategies we consider.

In the temporally constant setting, the class of reaction-diffusion-
advection models we and others have considered are of the form

∂
∂

= ∇ ∇ − ∇ + +

∂
∂

= ∇ ∇ − ∇ + +

u
t

μ x u α x u e x f x u v u

v
t

ν x v β x v h x f x u v v

·( ( ) ( ) ( )) ( , )

·( ( ) ( ) ( )) ( , )
(1)

on Ω×(0, ∞), subject to the no-flux boundary conditions

̂
̂

∇ − ∇ =

∇ − ∇ =

μ x u α x u e x η x

ν x v β x v h x η x

( ( ) ( ) ( ))· ( ) 0

( ( ) ( ) ( ))· ( ) 0 (2)

on ∂Ω×(0, ∞), where Ω is a bounded domain in Euclidean space of
dimension N with sufficiently smooth boundary, ̂η x( ) is the unit out-
ward normal along the boundary ∂Ω of Ω, and the diffusion coefficients
μ(x), ν(x) and advection coefficients α(x), β(x) are smooth on Ω and
positive. The functions e(x) and h(x), whose gradients are advected up
by species with densities u and v respectively, are sufficiently smooth
on Ω . The function f(x, w) represents fitness at location ∈x Ω and
density w≥ 0. It is sufficiently smooth in both variables and decreases
in w, with f(x, 0)> 0 on Ω and f(x, K)< 0 on Ω for some K>0 . Our
work and that of our collaborators and others [1–7,15–17] has focused
on logistic fitness, especially the case where = −f x w m x w( , ) ( ) , with
constant diffusion and advection parameters. The function m(x) gives
the temporally constant, spatially heterogeneous background distribu-
tion. It is easy to observe [2] that if =μ α and

= =e x f x m x( ) log ( , 0) log ( ), the species with density u exhibits ideal
free dispersal in the absence of the species with density v. Here the

equilibrium density is the resource distribution m(x). There is no net
movement at equilibrium since ∇ = ∇m x(log ( )) ,m x

m x
( )

( ) which means ad-
vection is in the direction of ∇m(x) but with its magnitude modulated
by the value of m(x). Such movement is conditioned upon purely local
information. Nevertheless, as noted [1,2], it aggregates to the popula-
tion level on the habitat patch Ω so that ideal free dispersal is an ESS
and NIS. This phenomenon may also be detected in other reaction-
diffusion-advection formulations [16,17] and some integro-differential
models [8]. This is remarkable in light of the original formulation of the
ideal free distribution [10,11]. We shall see that once we incorporate
temporal periodicity along with spatial heterogeneity into the resource
distribution m, having an ideal free dispersal strategy will require
nonlocal as well as local information.

The remainder of the paper is structured as follows. In Section 2, we
will treat analogues to (1) and (2) where m(x, t) is T-periodic in time, in
the case of one space dimension. We will allow both no-flux and spa-
tially periodic boundary conditions, and determine when ideal free
dispersal is possible. It turns out that the condition needed on m is the
same for both types of boundary condition. We then show that ideal
free dispersal is an ESS and NIS. In Section 3, we show that in habitats
with smooth boundaries, we may extend our results in the no-flux case
to higher space dimensions. Finally, in Section 4, we discuss biological
ramifications of our results.

2. Ideal free dispersal on [0, L]

Consider the model

∂
∂

= − + −u
t

μu uP x t m x t u u[ ( , )] [ ( , ) ]x x (3)

in (0, L)× (0, ∞) subject to the no-flux boundary condition

− = = −μu t u t P t μu L t u L t P L t(0, ) (0, ) (0, ) 0 ( , ) ( , ) ( , )x x (4)

for t>0. Here we require μ>0, P and m smooth and T-periodic in time
with

m(x, t)> 0 for (x, t)∈ [0, L]× [0, T].
It follows from results in [12] that (3)-(4) admits a unique positive

T-periodic solution that is the global attractor for all nonnegative
nontrivial initial data. (Direct application of [12] may require a change
of variable to obtain classical boundary conditions; see (10).)

We say that (3)-(4) admits an ideal free dispersal strategy whenever
m(x, t) is the positive periodic orbit in question. For in that case,

∂
∂

= −m
t

μm mP x t[ ( , )]x x (5)

in (0, L)× (0, ∞), with

− = = −μm t m t P t μm L t m L t P L t(0, ) (0, ) (0, ) 0 ( , ) ( , ) ( , )x x (6)

for t>0, and the population moves so as to align perfectly with the
resource distribution through space and time.

Since we are in one space dimension P(x, t) is necessarily a spatial
gradient. From (6), it is clear that P(0, t) can only be

= =
∂

∂
P t μ m t

m t
μ

m
x

t(0, ) (0, )
(0, )

log
(0, ).x

(7)

To obtain P(x, t) so that (3)-(4) admits an ideal free dispersal
strategy, we must integrate (5) with respect to x. The resulting function
P(x, t) needs to be T-periodic in time and the second condition in (6)
needs to be satisfied. It follows from (5) that our candidate for P is given
by

∫= ⎡
⎣⎢

− ⎤
⎦⎥

P x t
m x t

μm x t m y t dy( , ) 1
( , )

( , ) ( , ) .x
x

t0 (8)

for (x, t)∈ [0, L]× (0, ∞). Since m is T-periodic in time, it follows
immediately from (8) that so is P. Notice here that P depends on non-
local as well as local information about resource distribution.
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It remains to see if it is possible for m to satisfy (6) at =x L. We have
from (8) that

∫− = −m x t P x t μm x t m y t dy( , ) ( , ) ( , ) ( , )x
x

t0 for x∈ [0, L].
Consequently, m satisfies (6) at =x L if and only if

∫∂
∂

=
t

m y t dy( , ) 0,
L

0 (9)

meaning that the overall total amount of resource is constant in time.
We consider the ramifications of (9) in Section 4. The upshot is that we
get ideal free dispersal for (3)-(4) with P given by (7) if and only if (9)
holds.

Remark: If we considered the form of dispersal leading to an ideal
free distribution treated in [15–17], based on carrying capacity driven
diffusion, the problem analogous to solving (5) for P would be finding a
positive solution D for

∂
∂

=m
t

D x t m( ( , ) )xx

where Dm also satisfies no-flux boundary conditions. This can be done if
m>0 and (9) holds, but the solution again involves an integration that
requires nonlocal spatial information on m(x, t).

We now want to show that this strategy is an ESS and NIS. To this
end, we will employ methods of monotone dynamical systems
theory [12,18]. To justify this approach, we need to know that so-
lutions to problems of the form (3)-(4) for arbitrary T-periodic and
smooth P(x, t) admit a maximum principle. To this end, define a
function w by

∫= −w e u.μ P y t dy1 ( , )
x

0 (10)

A straightforward calculation shows that
= −∫μ e w x t μu x t u x t P x t( , ) ( , ) ( , ) ( , ).P y t dy

x x
( , )μ

x1
0

So if u satisfies (4) and w is given by (10), w satisfies a homogeneous
Neumann boundary condition. Since

= −∫ ∫−w e u x t w x t( , ) ( , ),t
P y t dy

t
P y t dy

μ
( , ) ( , )

μ
x x

1
0 0 it follows from (3)

and (10) that w satisfies a maximum principle. Consequently, so does u.
So now consider

∂
∂

= − + − −

∂
∂

= − + − −

u
t

μu uP x t m x t u v u

v
t

μv vQ x t m x t u v v

[ ( , )] [ ( , ) ]

[ ( , )] [ ( , ) ]

x x

x x (11)

on (0, L)× (0, ∞), subject to the no-flux boundary conditions

− = = −

− = = −

μu t u t P t μu L t u L t P L t

μv t v t Q t μv L t v L t Q L t

(0, ) (0, ) (0, ) 0 ( , ) ( , ) ( , )

(0, ) (0, ) (0, ) 0 ( , ) ( , ) ( , )

x x

x x (12)

for t>0. As before, μ is a positive constant, m is smooth, T-periodic in
time and positive on [0, L]× [0, T], and P and now Q are smooth and T-
periodic in time. The results of [12,13] enable us to view (11)-(12) as
generating a monotone discrete dynamical system [18] on C1[0,
L]× C1[0, L]. We have the following result.

Theorem 1. Consider C1[0, L]× C1[0, L] and assume that (5)-(6) holds.
Then if Q≠ P, for any nonnegative, nontrivial initial data (u0, v0)∈ C1[0,
L]× C1[0, L], the solution to C1[0, L]× C1[0, L] with =u x u x( , 0) ( )0 and

=v x v x( , 0) ( )0 converges in C1[0, L]× C1[0, L] to the periodic steady state
(m(x, t), 0) as t→∞.

Remark.

(i) Let us refer to the species with density u as species 1 and the species
with density v as species 2. The dispersal strategy for species 2 in
(11)-(12) is ideal free precisely when =Q P. Consequently, species
1 excludes species 2 in (11)-(12) so long as species 2 does not
employ an ideal free dispersal strategy. Hence the ideal free dis-
persal strategy is an ESS and NIS among strategies of the form

−μw wQ x t[ ( , )]x x.

(ii) If we define p and q by ∫=p x t P y t dy( , ) ( , )x
0 and

∫=q x t Q y t dy( , ) ( , ) ,x
0 then the advection term in the dispersal

strategy of species 1 (respectively species 2) is advection up the
gradient of p (respectively q).

(ii) The results of [12,13] employ an interplay between viewing (11)-
(12) as a non-autonomous system of pde’s and a discrete time dy-
namical system. As a result, we may employ monotone dynamical
systems theory [18] to establish Theorem 1, so long as we show
there is no component-wise positive periodic orbit for (11)-(12) and
that (0, v*) is unstable, where v* is the unique globally attracting
periodic orbit of

∂
∂

= − + −v
t

μv vQ x t m x t v v[ ( , )] [ ( , ) ]x x on (0, L)× (0, ∞) with

− = = −μv t v t Q t μv L t v L t Q L t(0, ) (0, ) (0, ) 0 ( , ) ( , ) ( , )x x for t>0.
The existence of such a v* follows from [12].

Proof. We first show there is no component-wise positive periodic orbit
for (11)-(12). Suppose to the contrary that (u(x, t), v(x, t)) is such an
orbit. Then

∂
∂

= − + − −u
t

μu uP x t m x t u v u[ ( , )] [ ( , ) ]x x (13)

and

∂
∂

= −m
t

μm mP x t[ ( , )]x x (14)

on (0, L)× (0, ∞). Multiplying (13) by m/u and (14) by log u, we
obtain that

∂
∂

= − + −

+ − −

m u
t

m u μu uP x t u μm mP x t

m u v m

( log )
( / )( ( , )) log ( ( , ))

[ ] .

x x x x

(15)

Now integrate (15) over [0, L]× [0, T]. Since m and u are T-
periodic, the left hand side of the resulting equation is zero. We can
employ integration by parts on the first two terms of the right hand
side, using the no-flux boundary conditions on m and u to obtain

∫ ∫

∫ ∫

∫ ∫

= − +

+ − −

= − +

− + + − −

= − + − − +

−

μm u u μm u u m P

m m u v dxdt

μm u u μm u u m m μm m m

μm m m m P m m u v dxdt

μm u u m m m m u v m P

μ m m dxdt

0 [ ( ) )/( ) 2 ( / )

( )]

[ ( ) )/( ) 2 ( / )( / ) ( ) )/( )

( ) )/ ( )]

[ (( / ) ( / )) ( )

( ) / ] .

T L
x x x x

T L
x x x x

x x

T L
x x x

x

0 0
2 2

0 0
2 2 2 2

2 2

0 0
2

2

(16)

Now consider ∫ ∫ −m P μ m m dxdt( ( ) / )T L
x x0 0

2 . Recall that

∫= −P x t
μm
m m

m y t dy( , ) 1 ( , ) .x x
t0

Consequently

∫

∫

− = −

=−

m P μ m m m y t dy

m m y t dy

( ) / ( , )

(log ) ( , ) .

x x
m
m

x
t

x
x

t

2
0

0

x

Thus

∫ ∫

∫ ∫ ∫

∫ ∫
∫ ∫

∫ ∫

−

= −

= −

+

=

m P μ m m dxdt

m m y t dy dxdt

m L t m y t dy dt

m x t m x t dxdt

m x t m x t dxdt

( ( ) / )

[ (log ) ( , ) ]

[ (log ( , ) ( , ) ]

log ( , ) ( , )

log ( , ) ( , )

T L
x x

T L
x

x
t

T L
t

T L
t

T L
t

0 0
2

0 0 0

0 0

0 0

0 0
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since ∫ =m y t dy( , ) 0L
t0 . Since = −m x t m x t m m mlog ( , ) ( , ) ( log ) ,t t we

get

∫ ∫ ∫ ∫− = −

=

m P μ m m dxdt m m m dtdx( ( ) / ) ( log )

0

T L
x x

L T
t0 0

2
0 0

since m is T-periodic in time. Consequently (16) reduces to

∫ ∫= − + − −μm u u m m m m u v dx dt0 [ (( / ) ( / )) ( )] .
T L

x x0 0
2

(17)

Integrating the equations for u and v in (11) over [0, L]× [0, T) and
employing T-periodicity and no-flux boundary conditions leads us to

∫ ∫ ∫ ∫− − = − − =u m u v dxdt v m u v dxdt( ) ( ) 0.
T L T L

0 0 0 0

Adding these last equations to (17) gives

∫ ∫= − + − −μm u u m m m u v dx dt0 [ (( / ) ( / )) ( ) ] .
T L

x x0 0
2 2

(18)

Consequently, (18) implies that + ≡u v m and ux/u≡mx/m or
(log u)x≡ (logm)x. Hence = +u m c tlog log ( ), where c(t) is T-
periodic and thus =u s t m( ) , where s(t) is T-periodic and positive. As

+ ≡u v m, = −v s t m(1 ( )) and s(t)∈ [0, 1] for all t∈ [0, T]. The
equation for u in (11) becomes

= − = −sm μ sm smP s μ m mP( ) ( ( ) ) ( ( ) )t x x x x

so that

= − − =ms s μ m mP sm( ( ) ) 0t x x t

because (5) is satisfied due to our choice of P. Since we assume m>0, it
follows that in [0, L]× [0, T]. Thus s(t)≡ s(0). If =s (0) 1, then v≡ 0,
contradicting our assumption that (u(x, t), v(x, t)) is a componentwise-
positive steady state for (11)-(12). Hence we must have s(0)< 1.
Consequently the equation for v in (11) reduces to

= −m μm mQ[ ]t x x.
It then follows from (5) that − ≡m x t Q x t P x t[ ( , )( ( , ) ( , ))] 0x for

x∈ (0, L) and t>0. Since the boundary conditions (12) imply
− =m t Q t P t(0, )( (0, ) (0, ) 0, it follows that Q(x, t)≡ P(x, t) for x∈ (0,

L) and t≥ 0, contrary to the hypotheses of Theorem 1. So there can be
no such component-wise positive steady state for (11)-(12).

To address the instability of (0, v*), we need γ<0 in

= − + − +ϕ μϕ ϕP m v ϕ γϕ[ ] ( *)t x x (19)

where ϕ is T-periodic in time, ϕ is smooth and positive on [0, L]× [0,
T] and satisfies

− = −μϕ t ϕ t P t ϕ L t ϕ L t P L t(0, ) (0, ) (0, ) ( , ) ( , ) ( , )x x (20)

for t>0. We may calculate in manner analogous to (15) that

= − + − + − +m ϕ ϕ μm mP m ϕ μϕ ϕP m m v mγ( log ) log [ ] ( / )[ ] ( *)t x x x x

(21)

Here, as before, we have made use of (5). Integrating over [0,
L]× [0, T] and proceeding as with (15) we obtain

∫ ∫= − + − +μm ϕ ϕ m m m m v mγ dx dt0 [ (( / ) ( / )) ( *) ] .
T L

x x0 0
2

(22)

Integrating the equation for v* over [0, L]× [0, T] yields

∫ ∫= −m v v dx dt0 ( *) * .
T L

0 0 (23)

Adding (22) and (23), we obtain

∫ ∫
∫ ∫

= − + −

+

μm ϕ ϕ m m m v dxdt

γ mdxdt

0 [ (( / ) ( / )) ( *) ]

.

T L
x x

T L
0 0

2 2

0 0 (24)

It is clear from (24) that γ<0 unless m≡ v*. But in that case we
have

= −m μm mP( )t x x and
= −m μm mQ( )t x x which implies that − ≡m P Q( ( )) 0x . As before,

since − =m t P t Q t(0, )( (0, ) (0, )) 0 for t>0, we conclude that P(x,
t)≡Q(x, t), a contradiction. Thus γ<0, and (0, v*) is unstable.

We conclude that all solutions to (11)-(12) corresponding to non-
negative, nontrivial initial data converge to the periodic steady state (m
(x, t), 0) as t→∞. Consequently, ideal free dispersal is an ESS and NIS
in this context. □

Remark. We may also obtain ideal free dispersal if m is L-periodic in
space as well as T-periodic in time. In this case there is no restriction on
P(0, t) and no issue regarding the maximum principle. The proof of the
result corresponding to Theorem 1 in this case requires only modest
changes from that of Theorem 1 and is therefore omitted.

3. Extension to higher space dimensions

The analogue to (3)-(4) in higher space dimensions is

∂
∂

= ∇ ∇ −
→

+ −u
t

μ u uP x t m x t u u·( ( , )) ( ( , ) ) (25)

in Ω×(0, ∞) subject to the no-flux boundary condition

̂∇ −
→

=μ x u uP x t η x( ( ) ( , ))· ( ) 0 (26)

on ∂Ω×(0, ∞), where Ω is the focal habitat patch in question and ̂η is
the outward normal to ∂Ω. If the space dimension is higher than 1, it is
imminently possible to construct a vector valued function

→
P x t( , ) which

is T-periodic in time and such that

= ∇ ∇ −
→

m μ m mP·( )t (27)

in Ω×(0, ∞) with

̂∇ −
→

=μ m mP η x( )· ( ) 0 (28)

on ∂Ω×(0, ∞). Indeed, one may choose

→
= ∇ − ∇P x t

m x t
μ m x t q x t( , ) 1

( , )
[ ( , ) ( , )]

(29)

where q is such that

∇ ∇ =q m·( ) t (30)

with ̂∇ =q η x· ( ) 0 on ∂Ω×(0, ∞), so long as

∫ =m y t dy( , ) 0tΩ

for all t. As in the case of one space dimension, to achieve an ideal free
distribution requires the use of nonlocal information. Again, an analo-
gous construction could be used in the case of the type of models
considered in [15–17] but would still use nonlocal information. If po-
sitive solutions to (25)-(26) with

→
P x t( , ) given by (29)-(30) satisfy a

maximum principle, the analogue to Theorem 1 obtains in higher space
dimensions. Moreover, the proof is a straightforward adaptation of that
of Theorem 1. However,

→
P x t( , ) given by (29)-(30) need not be a gra-

dient so that the change of variables analogous to (10), namely
=w e up x t( , ) where ∇ =

→
p x t P x t( , ) ( , ), can not be employed for this

purpose.
To circumvent this limitation on

→
P , we look for a sufficiently

smooth function α(x, t) which is T-periodic in t, so that

=w e uα x t( , ) (31)

satisfies a maximum principle. Again, if w satisfies a maximum prin-
ciple, so will u.

It is easy to show that w satisfies
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= − ∇ ∇ − ∇
→

+ ∇ − + ∇
→

− ∇
→

+ + − −

w μ w μ α w w P

μ α μ α α P P w

α w m x t e w w

Δ 2 · ·

[ Δ · · ]

[ ( , ) ]

t

t
α

2

(32)

in Ω×(0, ∞) with

̂∇ − ∇ −
→

=μ w μ α w wP η[ ( ) ]· 0 (33)

on ∂Ω×(0, ∞).
We see from (32)-(33) that w will satisfy the maximum principle on

Ω if (33) is a classical Robin boundary condition; i.e., if α(x, t) can be
chosen so that

̂ ̂− ∇ −
→

>μ α η P η· · 0 (34)

on ∂Ω×(0, ∞).
Note that

→
P given in (29)-(30) is a fixed function. Hence (34) will

hold provided

̂∇ < −μ α x t η p( , )· 0 (35)

for a sufficiently large constant p0. Consequently the change of vari-
ables (31) may be employed to show that u in (25)-(26) satisfies a
maximum principle (and consequently Theorem 1 extends to higher
space dimensions) so long as α(x, t) can be chosen so that (35) holds for
sufficiently large p0. To this end, we have the following result.

Proposition 1. Suppose �⊆Ω ,n where n≥ 2, is a bounded domain with
∂Ω of class C1. Then given fixed T-periodic

→
P x t( , ) satisfying (29)-(30),

there is a smooth function �→α: Ω satisfying (34).

Note: We establish that we can choose α depending only on x in-
dependent of t. Such a function is clearly T-periodic in time.

Proof. We first observe that we may construct a C1 function �→F: Ω
so that

∂Ω = =x F x{ : ( ) 0} with F(x)> 0 in Ω and ∇ ≠ →F x( ) 0 for x∈ ∂Ω.
We then show how to construct the required α.

Let x0 be an arbitrary point on ∂Ω. Since ∂Ω is of class C1, there is a
C1 diffeomorphism

→
ϕ from some ball Bϵ(x0) about x0 into a region

containing a ball Bδ(0) so that
→

=ϕ x( ) 00 and
→
ϕ maps (intΩ) ∩ Bϵ(x0) to

… > ∩y y y B{( , , ): 0} (0)n n δ1 . So yn = ϕn(x), the nth coordinate of
→
ϕ , is

positive for x∈ (intΩ) ∩ Bϵ(x0) and
∇→ϕx n = ∇→yy n = …(0, 0, ,1).

Since
→
ϕ is a diffeomorphism, so is

→−
ϕ

1
. Thus the Jacobian −Jac ϕ( )1

is invertible, with
∇→ϕx n = ∇− →Jac ϕ y( ) y n

1 for ∈x B x( ),ϵ 01 ∈y B (0)δ1 for sufficiently
small ϵ1< ϵ and δ1< δ. Moreover, ∇→ϕx n is an inward pointing normal

vector to ∂Ω, since ϕn(x)> 0 in Ω and =ϕ x( ) 0n on ∂Ω. Since
→
ϕ and

→−
ϕ

1
are C1, ∇→ϕx n is continuous, hence bounded below, say by g0> 0.
Now modify ϕn by multiplying by ψ(x), where ψ(x) is smooth, de-

fined on all of �n and satisfies ψ(x)≡ 1 on B x( ),ϵ /4 01 ψ≡ 0 outside
B x( ),ϵ /2 01 and ψ(x)> 0 for ∈x B x( )ϵ /2 01 . Then ψϕn≥ 0 inside Ω and ≤ 0
outside Ω. Hence, on the part of ∂Ω inside B x( )ϵ /2 01 (where ψ>0)
∇→ ψϕ( )x n remains an inward pointing normal. Elsewhere it is zero.
Further, if ∈x B x( ),ϵ /4 01 we have ∇→ϕx n = ∇→ ψϕ( ),x n so that
∇ ≥ =→ ψϕ g g x( ) ( )x n 0 0 0 . Let ρ x( )x0 be defined as ψϕn inside B x( )ϵ /2 01 and 0
outside B x( )ϵ /2 01 .

The preceding construction can be carried out at any point
x ∈ ∂Ω. The balls B x( )ϵ /41 form a cover of ∂Ω. We take a finite sub-
cover = …B x i K{ ( ): 1, , }x iϵ ( )/4i1 . Define = ∑ =F x ρ( ) i

K
x1 i. Any x ∈ ∂Ω is

in B x( )x iϵ ( )/4i1 for some xi. Consequently, ∇→Fx is an inward pointing
normal with length ∇ ≥ = … >→F min g x i i K g{ ( ): , , } *x i0 for some
g*> 0. This construction defines F in a neighborhood of ∂Ω with
F>0 inside Ω and =F 0 on ∂Ω . Standard methods allow us to ex-
tend F to all of Ω.

We now have that F satisfies

̂∇ = −F x f x η x( ) ( ) ( ) (36)

on ∂Ω where ̂η is a unit outward normal along ∂Ω and f(x)> 0 for
x∈ ∂Ω. Since

→
P x t( , ) is T-periodic, ̂→

∈ ∂ >max P η x t{ · : Ω, 0} is
bounded, say by p*. We may choose α as

= −α x α F x( ) ( )0 (37)

where α0 is chosen so that μα0 min {f(x): x∈ ∂Ω}> p*. □

Remark. Proposition 1 continues to hold if
→
P x t( , ) in (25)-(26) is

replaced with an arbitrary smooth
⎯→⎯
Q x t( , ) which is T-periodic in time.

We may now formalize the main result in the higher dimensional
case. To this end, we consider

∂
∂

= ∇ ∇ −
→

+ − −

∂
∂

= ∇ ∇ −
⎯→⎯

+ − −

u
t

μ u uP x t m x t u v u

v
t

μ v v Q x t m x t u v v

·[ ( , )] [ ( , ) ]

·[ ( , )] [ ( , ) ]
(38)

Ω×(0, ∞), subject to the no-flux boundary conditions

̂ ̂∇ −
→

= = ∇ −
⎯→⎯

μ u uP x t η μ v v Q x t η[ ( , )]· 0 [ ( , )]· (39)

on ∂Ω×(0, ∞), where ̂η is a unit outward normal to ∂Ω. Assume that
μ>0, m(x, t) is smooth, positive and T-periodic in time, and that
→
P x t( , ) and

⎯→⎯
Q x t( , ) are smooth and T-periodic in time. Proposition 1

guarantees that the methods of monotone dynamical systems apply to
(38)-(39). Consequently, the natural adjustments to the proof of
Theorem 1 to the higher dimensional space case guarantee the fol-
lowing

Theorem 2. Consider (38)-(39), where μ, m,
→
P , and

⎯→⎯
Q are as above.

Assume that ∫ m y t dy( , )Ω is constant in time and that
→
P x t( , ) is such that

(27)-(28) hold. If
⎯→⎯

≠
→

+
⎯→⎯

Q P H m/ , where ∇
⎯→⎯

=H x t· ( , ) 0 in Ω and
̂⎯→⎯
=H x t η( , )· 0 on ∂Ω, then for any nonnegative, nontrivial initial data

(u0, v0) in ×C C(Ω) (Ω),1 1 the solution to (38)-(39) with u(x, 0) = u0(x)
and v(x, 0) = v0(x) converges in ×C C(Ω) (Ω)1 1 to the periodic steady state
(m(x, t), 0) as t→∞.

Remark. Note that if
→
P satisfies (27) and (28) then so does

→
+

⎯→⎯
P H m/

if
⎯→⎯
H satisfies the hypotheses in Theorem 2 . This same type of non-

uniqueness of ideal free dispersal strategies in higher space dimensions
is also present in the temporally constant case; see [1].

4. Discussion

In the context of spatially heterogeneous but temporally constant
bounded habitats, reaction-diffusion-advection models [1,2,15–17]
may be used to capture an ideal free distribution at equilibrium. In such
cases, the density of an ecological species matches the underlying re-
source so as to have zero fitness throughout the habitat and to exhibit
no net movement. In a formulation such as (1)-(2) this phenomenon is
possible when advection is up the gradient of the logarithm of the re-
source at an appropriate rate relative to the random component of
motion. The resulting dispersal strategy- ∇·

∇ − ∇μ x u μ x u m x[ ( ) ( ) (log ( ))] - is then an ESS and an NIS against any
other strategy ∇ ∇ − ∇ν x v β x v h x·[ ( ) ( ) ( )] where −h x m x( ) log ( ) is non-
constant [1,2].

In this paper we show that it is possible to extend this notion of ideal
free dispersal to cases wherein the resource is both spatially hetero-
geneous and T-periodic in time provided (9) holds, so that the total
resource abundance- ∫ m y t dy( , )Ω - is constant in time. Having total
resource abundance constant in time means that the organism in
question does not have to consider the timing of reproductive events per
se. It can reproduce optimally by adjusting its spatial position appro-
priately over time. If (9) fails to hold, so the total resource abundance
varies in time, then the timing of reproductive events, i.e., phenology,
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becomes important. In that situation organisms may not be able to
optimize their fitness by movement alone, but might be able to do so if
they also match their reproductive effort to the resource level. This is an
interesting topic for further study. When (9) holds, the density that
matches resources is a time dependent steady-state, namely a periodic
orbit. Moreover, the advective component of the ideal free movement
must take into account the values of the resource over the whole of the
habitat; i.e., the species at hand must utilize nonlocal information in
order to achieve ideal free dispersal. Such is in distinct contrast to the
temporally constant case where advection up the resource at a rate
depending upon the level of the resource at the present position leads to
ideal free dispersal. Thus, in the temporally constant setting, one can
achieve ideal free dispersal in the reaction-diffusion-advection context
with only local information. One should note here that the advective
component of ideal free dispersal in the time periodic setting does re-
duce to advection up the gradient of the logarithm of the resource in the
limiting case of vanishing time periodicity. In the time periodic case in
one space dimension, advection in ideal free dispersal is movement up a
(time dependent) gradient. In higher space dimensions, such is gen-
erally not the case.

We show that ideal free dispersal in the time periodic setting has the
important advantage of being an ESS and an NIS relative to movement
strategies with a different advective component. This advantage relies
on utilization of temporally dependent nonlocal information. This fea-
ture resonates with the original formulations of the ideal free dis-
tribution [10,11] with respect to the perceptual range of the species in
question. Other settings in which utilization of nonlocal information is
advantageous (in the determination of optimal movement strategies in
spatially and temporally heterogeneous landscapes) are discussed in
[14] and [9]. Here the metrics do not pertain to considerations of
pairwise invasibility of ecologically identical competitors but rather
focus on the role of nonlocal information in foraging success. In [14]
the famous wildebeest migration in Africa is studied by comparing si-
mulation models and data, and the authors conclude that the study
“strongly suggest that extended perceptual neighborhoods are a pre-
requisite for effective landscape-level exploitation of resources by
wildebeest”. In [9], models are developed that show that utilization of
nonlocal information in determining movement in spatio-temporally
heterogeneous landscapes increases foraging success in highly ephem-
eral landscapes over strategies which rely solely on local cues.

Supplementary material

Supplementary material associated with this article can be found, in
the online version, at 10.1016/j.mbs.2018.09.002

References

[1] I. Averill, Y. Lou, D. Munther, On several conjectures from evolution of dispersal, J.
Biol. Dyn. 6 (2012) 117–130.

[2] R.S. Cantrell, C. Cosner, Y. Lou, Evolution of dispersal and the ideal free distribu-
tion, Math. Biosci. Eng. 7 (2010) 17–36.

[3] R.S. Cantrell, C. Cosner, Y. Lou, Evolutionary stability of ideal free dispersal stra-
tegies in patchy environments, J. Math. Biol. 65 (2012) 943–965.

[4] R.S. Cantrell, C. Cosner, Y. Lou, D. Ryan, Evolutionary stability of ideal free dis-
persal in spatial population models with nonlocal dispersal, Can. Appl. Math. Q. 20
(2012) 15–38.

[5] R.S. Cantrell, C. Cosner, Y. Lou, S. Schreiber, Evolution of natal dispersal in spatially
heterogeneous environments, Math. Biosci. 283 (2017) 4565–4616.

[6] R.S. Cantrell, C. Cosner, Y. Zhou, Ideal free dispersal and evolutionary stability in
integrodifference models, preprint, 2018.

[7] C. Cosner, Reaction-diffusion-advection models for the effects and evolution of
dispersal, Discrete Cont. Dyn. Syst. A 34 (2014) 1701–1745.

[8] C. Cosner, J. Davila, S. Martinez, Evolutionary stability of ideal free nonlocal dis-
persal, J. Biol. Dyn. 6 (2012) 395–405.

[9] W.F. Fagan, E. Gurarie, S. Bewick, A. Howard, R.S. Cantrell, C. Cosner, Perceptual
ranges, information gathering, and foraging success in dynamical landscapes, Am.
Nat. 189 (2017) 474–489.

[10] S.D. Fretwell, Populations in a Seasonal Environment, Princeton University Press,
1972.

[11] S.D. Fretwell, H.L. Lucas, On territorial behaviour and other factors influencing
habitat distribution in birds, Acta Biotheor. 19 (1969) 16–36.

[12] P. Hess, Periodic-parabolic boundary value problems and positivity, Pitman
Research Notes in Mathematics 247, Longman, Scientific and Technical, Harlow,
Essex, UK, 1991.

[13] P. Hess, A.C. Lazer, On an abstract competition model and applications, Nonlinear
Anal. 16 (1991) 917–940.

[14] R.M. Holdo, R.D. Holt, J.M. Fryxell, Opposing rainfall and plant nutritional gra-
dients best explain the wildebeest migration in the serengeti, Am. Nat. 173 (2009)
431–445.

[15] L. Korobenko, E. Braverman, A logistic model with carrying capacity driven diffu-
sion, Can. Appl. Math. Q. 17 (2009) 85–104.

[16] L. Korobenko, E. Braverman, On logistic models with a carrying capacity dependent
diffusion: stability of equilibria and coexistence with a regularly diffusing popula-
tion, Nonlinear Anal. Real World Appl. 13 (2012) 2648–2658.

[17] L. Korobenko, E. Braverman, On evolutionary stability of carrying capacity driven
dispersal in competition with regularly diffusing populations, J. Math. Biol. 69
(2014) 1181–1206.

[18] H.L. Smith, Monotone dynamical systems, Mathematical Surveys and Monographs
41, American Mathematical Society, Providence, RI, 1995.

R.S. Cantrell, C. Cosner Mathematical Biosciences 305 (2018) 71–76

76

https://doi.org/10.1016/j.mbs.2018.09.002
http://refhub.elsevier.com/S0025-5564(18)30386-9/sbref0001
http://refhub.elsevier.com/S0025-5564(18)30386-9/sbref0001
http://refhub.elsevier.com/S0025-5564(18)30386-9/sbref0002
http://refhub.elsevier.com/S0025-5564(18)30386-9/sbref0002
http://refhub.elsevier.com/S0025-5564(18)30386-9/sbref0003
http://refhub.elsevier.com/S0025-5564(18)30386-9/sbref0003
http://refhub.elsevier.com/S0025-5564(18)30386-9/sbref0004
http://refhub.elsevier.com/S0025-5564(18)30386-9/sbref0004
http://refhub.elsevier.com/S0025-5564(18)30386-9/sbref0004
http://refhub.elsevier.com/S0025-5564(18)30386-9/sbref0005
http://refhub.elsevier.com/S0025-5564(18)30386-9/sbref0005
http://refhub.elsevier.com/S0025-5564(18)30386-9/sbref0006
http://refhub.elsevier.com/S0025-5564(18)30386-9/sbref0006
http://refhub.elsevier.com/S0025-5564(18)30386-9/sbref0007
http://refhub.elsevier.com/S0025-5564(18)30386-9/sbref0007
http://refhub.elsevier.com/S0025-5564(18)30386-9/sbref0008
http://refhub.elsevier.com/S0025-5564(18)30386-9/sbref0008
http://refhub.elsevier.com/S0025-5564(18)30386-9/sbref0009
http://refhub.elsevier.com/S0025-5564(18)30386-9/sbref0009
http://refhub.elsevier.com/S0025-5564(18)30386-9/sbref0009
http://refhub.elsevier.com/S0025-5564(18)30386-9/sbref0010
http://refhub.elsevier.com/S0025-5564(18)30386-9/sbref0010
http://refhub.elsevier.com/S0025-5564(18)30386-9/sbref0011
http://refhub.elsevier.com/S0025-5564(18)30386-9/sbref0011
http://refhub.elsevier.com/S0025-5564(18)30386-9/sbref0012
http://refhub.elsevier.com/S0025-5564(18)30386-9/sbref0012
http://refhub.elsevier.com/S0025-5564(18)30386-9/sbref0012
http://refhub.elsevier.com/S0025-5564(18)30386-9/sbref0013
http://refhub.elsevier.com/S0025-5564(18)30386-9/sbref0013
http://refhub.elsevier.com/S0025-5564(18)30386-9/sbref0014
http://refhub.elsevier.com/S0025-5564(18)30386-9/sbref0014
http://refhub.elsevier.com/S0025-5564(18)30386-9/sbref0014
http://refhub.elsevier.com/S0025-5564(18)30386-9/sbref0015
http://refhub.elsevier.com/S0025-5564(18)30386-9/sbref0015
http://refhub.elsevier.com/S0025-5564(18)30386-9/sbref0016
http://refhub.elsevier.com/S0025-5564(18)30386-9/sbref0016
http://refhub.elsevier.com/S0025-5564(18)30386-9/sbref0016
http://refhub.elsevier.com/S0025-5564(18)30386-9/sbref0017
http://refhub.elsevier.com/S0025-5564(18)30386-9/sbref0017
http://refhub.elsevier.com/S0025-5564(18)30386-9/sbref0017
http://refhub.elsevier.com/S0025-5564(18)30386-9/sbref0018
http://refhub.elsevier.com/S0025-5564(18)30386-9/sbref0018

	Evolutionary stability of ideal free dispersal under spatial heterogeneity and time periodicity
	Introduction
	Ideal free dispersal on [0, L]
	Extension to higher space dimensions
	Discussion
	Supplementary material
	References




